excension of the shell model.

5. RADIOACTIVITY - DECAYS

Natural radioactivity was accidentally discovered by Becquerel in 1896, who found a photographic plate blackened by the proximity of a uranium compound. Radioactivity was investigated by Rutherford. He found the radiation consisted of two kinds namely the α - ray and the β -ray. Villard later discovered a third ray which he called the Gamma radiation.

A small amount of radioactive salt is placed at the bottom of a narrow hole drilled in a lead block. The rays escape from the lead block in a narrow pencil. The whole arrangement is enclosed in a box which can be evacuated. A magnetic field is applied at right angles to the beam of rays. The α -rays and β -rays are deflected, but the gamma rays are not deflected.

あるこちょ

The $\left[\frac{e}{m}\right]$ of the Beta rays was measured by Becquerel in 1900. The following year

Kaufmann carried out a more precise measurement. These experiments showed that Beta rays were steams of electrons. Later Bucherer proved that the mass of the electron

varied according to the formula
$$m = \frac{m_o}{\left[1 - \frac{v^2}{c^2}\right]^{\frac{1}{2}}}$$

Rutherford and Robinson measured the $\frac{e}{m}$ for α -rays by deflections in electric and magnetic fields. The charge on the alpha particle was measured by Rutherford and

Geiger as well as by Regener. The α - particle was found to have a mass four times the mass of the hydrogen atom and a positive charge equal to twice the charge on the electron.

This was confirmed by Rutherford and Royds.

Effect of Radioactive Decay

If an atom of charge Z and mass A emits an alpha particle, the following change occurs:

$$Z \xrightarrow{} Z - 2$$
$$A \xrightarrow{} A - 4$$

The emission of a beta particle from the nucleus raises the positive nuclear charge by unity while the mass remains unchanged.

 $Z \longrightarrow Z + 1$

The unstable nucleus undergoes a spontaneous change in its charge, by the transformation of a neutron into a proton with the emission of an electron.

Decay Laws

The number of unstable nuclei remaining undecayed in a given sample decreases

$$N = N_0 e^{-\lambda t}$$

where N_0 is the number of unstable nuclei present at an arbitrary instant of till t = 0. λ is called the decay constant which depends on the nuclide.

$$R = -\frac{dN}{dt} = \lambda N_0 e^{-\lambda t}$$
$$= \lambda N(t)$$

 λ dt represents the probability that a given nucleus will decay in time dt.

The decay of a nucleus is a random process, impossible to predict on the basis the history of the nucleus. However a mean lifetime τ can be defined. If v(t) dt is the number disintegrating in the time interval between t and t + dt,

$$N_0 \tau = \int_0^\infty t v(t) dt$$

$$v(t) dt = \lambda N(t) dt \text{ from (14)}$$

$$= \lambda N_0 e^{-\lambda t} dt$$

$$\therefore \tau = \frac{1}{\lambda}$$

Thus meanlife is the reciprocal of the decay constant.

If a certain unstable nucleus is present at a given instant, then the mean life time -counties how much longer we can statistically expect the nucleus to survive.

Half-life is the time that must elapse for the activity to fall to one-half of its present value.

 $t_{1,2} = \frac{ln 2}{\lambda} = \frac{0.693}{\lambda} = 0.693\tau$

Branched decays

More than one decay process is possible for a given unstable nucleus in a give state. For each process, we may define a partial decay constant $\lambda_1, \lambda_2, \ldots$. The tot probability of decay per unit time is

$$\lambda = \lambda_1 + \lambda_2 + \dots$$

Similarly,

$$\tau = \frac{1}{\lambda_1 + \lambda_2 + \dots}$$

Unit of Activity $\left(R = -\frac{dN}{dt}\right)$ is 1 becquerel = 1 Bq. 1 Bq = 1 event/s. The activities practice are so high that larger units are required.

1 MBq =
$$10^{6}$$
 Bq
1 GBq = 10^{9} Bq
1 curie = 1 Ci = 3.70×10^{10} event/s = 37 GBq